2024 Q3 SENSOR REPORT COMMERCE CITY NORTH DENVER COMMUNITY AIR MONITORING NETWORK COMMERCE CITY, COLORADO

Prepared For:

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43rd Avenue Denver, CO 80211

Document Number: **317AA-032669-RT-662**

Report Period: July 1 – September 30, 2024

Submittal Date: March 3, 2025

TABLE OF CONTENTS

SEC	CTION		<u>PAGE</u>
Exe	cutive Summary		4
1.0	INTRODUCTIO	N	6
	1.1 Air Monito	oring Site Description	6
2.0	METHODS		9
	2.1 Continuo	ıs Monitoring	9
	2.2 Assessme	ent of Community Health Implications	11
	2.3 Summary	of Downtime or Equipment Malfunction	12
3.0	RESULTS		13
	3.1 Results S	ummary	13
		onoxide (CO)	
	•	Dioxide (NO ₂)	
		xide (SO ₂)	
		Sulfide (H ₂ S)	
		e Matter (PM _{2.5})	
4.0		itile Organic Compounds (VOC)	
		S	
5.0	PROGRAM CF	ANGES	25
LIS	T OF APPENDI	CES	
Α	CALIBRATION	AND QA/QC DATA	
В	FIELD DATA S	HEETS	
С	CALIBRATION	GAS CERTIFICATION SHEETS	
LIS	T OF TABLES		
1-1		ORS AND SUMMA CANISTER SAMPLING LOCATIONS	8
• •		ORING TECHNOLOGY	
		ORING DATA RECOVERY	
1-4	CCND MONIT	ORS RESULTS SUMMARY	14
LIS	T OF FIGURES		
1-1	MAP OF CCNI	MONITOR LOCATIONS	7
1-2	CCND COMM	UNITY MONITORING CARBON MONOXIDE (CO) DATA	17
(ON	E-HOUR ROLL	NG AVERAGES)	17
		UNITY MONITORING NITROGEN DIOXIDE (NO2) DATA	
		NG AVERAGES)	

CCND Community Monitoring 2024 Q3

1-4 CCND COMMUNITY MONITORING SULFUR DIOXIDE (SO ₂) DATA	19
(ONE-HOUR ROLLING AVERAGES)	19
1-5A CCND COMMUNITY MONITORING HYDROGEN SULFIDE (H ₂ S) DATA	20
(ONE-HOUR ROLLING AVERAGES)	20
1-5B CCND COMMUNITY MONITORING HYDROGEN SULFIDE (H ₂ S) DATA	21
(24-HOUR ROLLING AVERAGES)	21
1-6A CCND COMMUNITY MONITORING PM _{2.5} DATA	22
(ONE-HOUR BLOCK AVERAGES)	22
1-6B CCND COMMUNITY MONITORING PM _{2.5} DATA	23
(24-HOUR BLOCK AVERAGES)	23
1-7 CCND COMMUNITY MONITORING VOC DATA	24
(ONE-HOUR ROLLING AVERAGES)	24

Executive Summary

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate, and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes¹: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}), and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from 6-liter evacuated stainless steel ("Summa") canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific VOCs. This report details approach number one, continuous near real-time air monitoring and a screening health risk analysis. Periodic collection and analysis of Summa canister air samples and mobile monitoring van data are presented in separate reports.

Continuous air monitoring sensors were operating at 10 locations across the CCND neighborhoods. The third quarter of 2024 air monitoring preliminary data was made available in near real-time at cond-air.com from July 1 – September 30, 2024, and final data is presented in this report. The sensors used in this program integrate different technologies including a photoionization detector for VOCs; an electrochemical sensor for CO, NO₂, H₂S, and SO₂; laser scattering for PM_{2.5}; and a sonic anemometer for wind speed and direction. All sensor monitoring was conducted in accordance with the Quality Assurance Project Plan (QAPP) available at condair.com/documents.

Health scientists from CTEH, LLC (CTEH®) (a subsidiary company of Montrose Environmental Group) evaluated the air monitoring data and compared them to air quality standards and health-based reference values to determine if the measured air quality may have the potential for adverse effects on community health.

The results of this assessment indicate the following:

• The monitored analyte levels at all locations were below their respective air quality standards or acute health-based reference levels, if available.

o It should be noted that the National Ambient Air Quality Standards (NAAQS) comparisons are used in the CCND Air Monitoring program for reference use only and may not be used to determine air quality compliance. This is because NAAQS compliance must be determined through the use of regulatory-certified

¹ An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

CCND Community Monitoring 2024 Q3

instrumentation and required calculation methodology further discussed in section 2.

1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group-Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate, and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}), and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect presence of specific VOCs. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material. This report details approach number one, the continuous, near real-time monitoring for the analytes listed. The Summa canister sampling and mobile monitoring van data are presented in separate reports. Air monitoring, sampling, and analysis from approaches (1) and (2) were conducted in accordance with the Quality Assurance Project Plan (QAPP) that can be found online at https://www.ccnd-air.com/Documents/.

1.1 Air Monitoring Site Description

Continuous air monitoring sensors were installed at ten locations across CCND neighborhoods within a three-mile radius of refinery operations in July 2021 (CM1-CM8). Two additional monitoring sensors were installed in December 2021 (CM9) and March 2022 (CM10). The monitor locations are shown in Figure 1-1 and described in Table 1-1; and were selected based on the following criteria:

- Historical wind pattern data
- Proximity to the refinery and non-refinery sources
- Existing infrastructure, as well as site access and safety
- Community feedback

FIGURE 1-1
MAP OF CCND MONITOR LOCATIONS

TABLE 1-1
CCND MONITORS AND SUMMA CANISTER SAMPLING LOCATIONS

			Distance from Refinery Center	
Location ID	Secondary ID	GPS Coordinates	(miles)	Cross Streets
CM1	Rose Hill Elementary School	39.80164, -104.90882	2.0	E. 58 th Ave. & Oneida St., Commerce City
CM2	Suncor Refinery Business Center	39.79630, -104.95727	0.70	Brighton Blvd. & York St., Commerce City
СМЗ	Adams City High School	39.82736, -104.90193	2.9	E. 72 nd Ave. & Quebec Pkwy, Commerce City
CM4	Adams City Middle School	39.82893, -104.93499	1.9	Birch St. & E. 72 nd Ave., Commerce City
CM5	Central Elementary School	39.81365, -104.92191	1.7	Holly St. & E. 64 th Ave., Commerce City
CM6	Focus Points Family Resource Center	39.78436, -104.95663	1.4	Columbine St. & 48 th Ave., Denver
СМ7	Kearney Middle School	39.80888, -104.91545	1.7	E 62 nd Ave. & Kearney St., Commerce City
CM8	Monroe	39.81560, -104.94503	0.85	Monroe St. & E 64 th Ave., Denver
СМ9	48 th and Race	39.78455, -104.96264	1.7	East 48 th Ave. & Race St., Denver
CM10	Alsup Elementary School	39.820268, -104.936616	1.2	East 68 th Ave. & Birch St., Commerce City

2.0 METHODS

2.1 Continuous Monitoring

The sensors used in the ten CCND network sites were manufactured by SensIT, an Indiana-based company. The near-Federal Equivalent Method (FEM) AQM65 monitors used for quality assurance of the network at three of the ten sites were manufactured by Aeroqual, a New Zealand-based company. Each sensor is solar powered and transmits data to the data platform via Long Term Evolution (LTE) cell technology. The monitoring in the community is performed using a variety of technology, as described in Table 1-2.

TABLE 1-2
CCND MONITORING TECHNOLOGY

Air Pollutant/Parameter Category	Principle of Operation	Sensor Manufacturer
Total VOC	Photoionization Detector	SensIT
SO ₂	Electrochemical Sensor	SensIT
CO	Electrochemical Sensor	SensIT
NO_2	Electrochemical Sensor	SensIT
H_2S	Electrochemical Sensor	SensIT
PM _{2.5}	Laser Scattering	SensIT
Wind Speed, Wind Direction	Sonic Anemometer	SensIT
Temperature, Relative Humidity, Barometric Pressure	Solid State	SensIT

The SensIT RAMP instruments monitor the ambient air by allowing it to passively enter each sensor's exterior housing via small holes and pass over the surface of the sensor as described in Table 1-2. The AQM65 monitors the ambient air via a pump that pulls the sample into the individual analyte-specific gas modules for analysis.

The Photoionization Detector (PID) sensors used to measure VOCs contain a lamp that produces photons that carry enough energy to break molecules into ions. The PID responds to molecules that have an ionization energy at or below the energy of the lamp; the PID used on this project employs a 10.6 electron-volt lamp. The produced ions then generate an electrical current that is measured as the output of the detector. PIDs are known to drift with ambient temperature and humidity variation. The PIDs used in this program mitigate the humidity issue by having a hydrophobic filter installed between the lamp and the ambient air. This deters water molecules from entering the ion-producing chamber and absorbing radiation. The PIDs are also heated slightly above ambient temperature to improve the stability of the detector.

Electrochemical sensors measure the concentration of a specific gas (SO₂, CO, NO₂, and H₂S) within an external circuit via oxidation or reduction reactions. These reactions generate the positive or negative current flow through the external circuit. An electrochemical sensor is made up of a working, counter, and reference electrode. All these components sit inside of a sensor housing along with a liquid electrolyte that is specific to the compound of interest. Temperature and relative humidity are known to affect the electrochemical sensors being used and could influence data quality. SensIT RAMP devices collect temperature and ambient relative humidity data along with an active sampling and heating mechanism to mitigate the impact of these interferences. SensIT RAMP non-zero readings that are below the instrument's detection limit may be artifacts of the manufacturer's algorithm. Extreme temperature and humidity conditions can cause the liquid electrolyte to dry up and cause erratic readings on the monitors.

Additionally, electrochemical sensors have known cross-sensitivity to other compounds. For example, ozone causes a response in the NO_2 sensor. This issue is mitigated by using an ozone filter on the face of the NO_2 sensor used to collect the data in this report. Similarly, the SO_2 sensor can have a response caused by the presence of H_2S . Again, the SO_2 sensor used to collect the data in this report has a built-in filter to mitigate the H_2S interference. The SO_2 sensor has additional interference from NO_2 .

The data are intended to be used for informational purposes only and cannot be used for official compliance determinations. The accuracy of sensors used in the program are not as high as certified ambient air monitoring equipment used by federal and local officials for NAAQS compliance monitoring. The sensors' detection limits and accuracy can be found in the QAPP online at https://www.ccnd-air.com/Documents/. State regulatory compliance data can be found on the CDPHE air quality website at https://www.colorado.gov/airquality.

The sampled particles are measured by the physical principle of light scattering. Each single particle is illuminated by a defined laser light and each scattering signal is detected at an angle of 90° by a photo diode. In accordance with the Mie theory, each measured pulse height is directly proportional to the particle size whereas each pulse is classified in an electronic register of 32 different size channels.

Sensor-based monitoring equipment like the SensIT RAMP are also known to produce data that is noisier (lower signal-to-noise ratio) than traditional regulatory reference method quality ambient

air monitoring equipment. To mitigate this issue, the data were averaged at one or 24-hours to improve the signal-to-noise of the instrument readings.

All sampling and quality assurance procedures were performed by Montrose.

2.2 Assessment of Community Health Implications

Health scientists from CTEH, LLC (CTEH®) (a subsidiary company of Montrose) evaluated the air monitoring data collected by Montrose from July 1, 2024, through September 30, 2024. Results were compared to various standards, health-based reference levels, and previously published regional data to determine if the measured air quality may have the potential for adverse health effects within the surrounding communities.

The analytes CO, NO₂, SO₂, and PM_{2.5} are all listed by the United States Environmental Protection Agency (USEPA) as "criteria air pollutants". These analytes were identified in the U.S. federal Clean Air Act as airborne pollutants that, at certain levels, may adversely impact public health and welfare and for which NAAQS would be established and updated based on the periodically reviewed scientific data associating criteria pollutant levels and public health impacts. Unlike chemical-specific health reference values, the NAAQS provide air quality standards designed to protect public health at the regional level.

The determination that a criteria pollutant is at a level legally required to be mitigated comes from evaluation of one year (CO) to three years (NO₂, SO₂, and PM_{2.5}) of air monitoring data² collected by regulatory-grade instrumentation. If the maximum or average analyte levels in this report are higher than their respective NAAQS, it does not indicate a violation of the NAAQS or that adverse health effects are likely. Any measurement of a criteria air pollutant over its respective NAAQS reference concentration must be evaluated in the context of one to three years of data previously collected. For example, a 1-hour average value above the NO₂ standard concentration would not constitute an exceedance of the NO₂ NAAQS. To be a NAAQS exceedance, a NO₂ measurement must be made by a regulatory grade instrument and compared to one-hour daily maximum concentration measurements, averaged over three years, to determine whether it is part of the 98th percentile or higher. However, the data reported herein may be used to determine trends in criteria pollutant levels in the CCND communities.

 $\rm H_2S$ is not a criteria air pollutant, but it was selected to be monitored because of its presence in some grades of crude oil and its refined products. The health reference values for $\rm H_2S$ were developed by the Agency for Toxic Substances and Disease Registry (ATSDR)³. The ATSDR acute health-based reference levels (one day to two weeks of continuous exposure) is a health reference value below which continuous exposure is likely to be without risk of developing adverse health effects, even in sensitive sub-populations. Maximum one-hour rolling average $\rm H_2S$ levels recorded in each CCND neighborhood were compared to an ATSDR acute-health-based reference level.

Finally, the USEPA has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike health-based reference levels that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA,

 $^{^2 \, \}text{USEPA NAAQS Table, available online at } \underline{\text{https://www.epa.gov/criteria-air-pollutants/naaqs-table}}$

³ ATSDR MRL List available online at https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx

"AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste, and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3]." The AEGL-1 60-minute value, if available for the applicable compound, was also used for comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects potential health impacts that are reversible upon cessation of exposure. The AEGL-1 60-minute values for H₂S (510 ppb), NO₂ (500 ppb), and SO₂ (200 ppb) were also listed for comparison purposes. The USEPA did not derive an AEGL-1 value for CO, therefore an AEGL-2 (83 ppm) was selected.

2.3 Summary of Downtime or Equipment Malfunction

Data recovery is a percentage of the number of data points collected divided by the expected number of data points. For example, if a data point is expected every five minutes, 12 data points would be expected over a one-hour period. If only 11 data points were received, the data recovery for that hour would be 92%. The data recoveries during the reporting period meets the QAPP targets and are presented in Table 1-3.

TABLE 1-3
CCND MONITORING DATA RECOVERY

	SensIT RAMP Percent Data Recover
Location ID	(includes periods of adverse atmospheric conditions)
CM1	96.0%
CM2	99.3%
CM3	98.5%
CM4	99.5%
CM5	87.9%
CM6	99.5%
CM7	98.2%
CM8	99.2%
CM9	99.3%
CM10	99.1%

Data recovery may be below 100% for several reasons, including instrument malfunction, communication issues, downtime when performing quality assurance procedures, theft, etc. In

alignment with the QAPP, data recovery does not include downtime when adverse atmospheric conditions, such as extreme humidity, extreme temperature, and other conditions which can affect a monitor's ability to provide reliable data. The CM5 SENSIT instrument had a malfunction of the CO sensor, resulting in a lower data recovery percentage, 41%. The system was able to measure the rest of the air pollutants (H₂S, NO₂, PM_{2.5}, SO₂, TVOC) with a data recovery more than 99%.

3.0 RESULTS

3.1 Results Summary

The one-hour average results for CO, NO_2 , H_2S , SO_2 , and VOCs during this reporting period can be found in Table 1-4 and Figures 1-2 through 1-5A and Figure 1-7. The gaseous (CO, NO_2 , H_2S , SO_2 , and VOC) data is reported on a one-hour rolling average updated every five minutes. The $PM_{2.5}$ data presented on the website is a one-hour block average to align with the other $PM_{2.5}$ sensor-based monitoring programs around the local community; these readings are shown in Figure 1-6A. The 24-hour block average for $PM_{2.5}$ and rolling average for H_2S are also reported and can be found in Table 1-4, and Figure 1-6B, and Figure 1-5B. Values reported as zero do not necessarily mean that the analyte is not present, but instead indicates that the analytes' concentration, if present, is below the detectable level of the instrument. For the purposes of this report, results measured below the detectable level (or detection limit- DL) are displayed in the individual graphs at the end of this document.

This evaluation includes screening values from the USEPA NAAQS, EPA AEGL, and ATSDR Minimal Risk Level (MRL). The Clean Air Act requires USEPA to set NAAQS for criteria air pollutants. AEGLs are used by emergency planners and responders worldwide as guidance for emergency response situations. Health reference levels, such as MRLs provided by the ATSDR, are intended to serve as a screening tool to help public health professionals determine where further evaluation may be needed. As explained above in Section 2.2, if the maximum or average analyte levels in this report are higher than their respective NAAQS reference level, it does not indicate an exceedance of the NAAQS or that adverse health effects are likely. Table 1-4 and Figures 1-2 to 1-7 indicate readings for the monitoring period relative to the NAAQS and MRLs (if applicable).

TABLE 1-4
CCND MONITORS RESULTS SUMMARY

Analyte	Range Across Network ⁴	NAAQS Reference Values	Health-based Reference Value (Source)
СО	<0.05 – 1.4 ppm (1-hour average)	35 ppm (1-hour average not to be exceeded more than one per year)	83 ppm (1-hour USEPA AEGL-2)
NO_2	<20 – 92.9 ppb (1-hour average)	100 ppb (98th percentile of 1-hour daily maximum, averaged over 3 years)	500 ppb (1-hour USEPA AEGL-1)
SO ₂	<50-73.8 ppb (1-hour average)	75 ppb (99 th percentile of 1-hour daily maximum concentrations, averaged over 3 years)	200 ppb (1-hour USEPA AEGL-1)
H ₂ S	<10ppb (24-hour average)	NA	70 ppb (acute ⁵ ATSDR MRL)
H ₂ S	<10 – 76.2 ppb (1-hour average)	NA	510 ppb (1-hour USEPA AEGL-1)
PM _{2.5}	<1 – 14.5µg/m³ (24-hour average)	35 μg/m³ (98 th percentile of 24-hour daily average concentrations, averaged over 3 years)	NA
Total VOC	<0.01 – 0.6 ppm (1-hour average)	NA	NA

⁴ The "<" symbol indicates that the recorded concentration was less than the instrument's detection limit

⁵ An acute exposure is defined by ATSDR as 1-14 days

3.2 Carbon Monoxide (CO)

Figure 1-2 shows the one-hour rolling averages of CO from July 1, 2024, through September 30, 2024. The USEPA NAAQS for CO is 35 ppm as a one-hour average not to be exceeded more than once per year. Figure 1-3 shows that all the measured one-hour average CO values in all CCND neighborhoods were 25 times lower (maximum 1-hour average: 1.4 ppm) than the CO NAAQS reference level. Further, the maximum one-hour measured CO values in the CCND neighborhoods were more than 59 times lower than the one-hour USEPA AEGL-2 of 83 ppm.

3.3 Nitrogen Dioxide (NO₂)

Figure 1-3 shows the one-hour rolling averages of NO₂ from July 1, 2024, through September 30, 2024. The USEPA NAAQS for NO₂ is 100 ppb as the 98th percentile of one-hour daily maximum concentrations, averaged over three years. Figure 1-3 shows that all measured 1-hour average NO₂ values in all CCND neighborhoods (maximum 1-hour average: 92.9 ppb) were at least 7% lower than the NO₂ NAAQS concentration. Thus, NO₂ levels such as those measured in the CCND neighborhoods would not contribute to an annual exceedance of the NAAQS. Further, the maximum measured one-hour average NO₂ concentration across all the CCND neighborhoods was at least five times lower than the one-hour USEPA AEGL-1 for NO₂ of 500 ppb.

3.4 Sulfur Dioxide (SO₂)

Figure 1-4 shows the one-hour rolling averages of SO_2 from July 1, 2024, through September 30, 2024. The USEPA NAAQS for SO_2 is 75 ppb as 99^{th} percentile of one-hour daily maximum concentrations, averaged over three years. Figure 1-4 shows a maximum one-hour average SO_2 value of 73.8 ppb. The maximum measured one-hour average SO_2 concentrations measured across all the CCND neighborhoods was more than two times lower than the one-hour USEPA AEGL-1 for SO_2 of 200 ppb.

3.5 Hydrogen Sulfide (H₂S)

Figures 1-5A and 1-5B show the one-hour and 24-hour rolling averages of H_2S , respectively, from July 1, 2024, through September 30, 2024. All of the 24-hour averages for H_2S were below the limit of detection, or 10 ppb. This indicates that all measurements were more than seven times lower than the ATSDR acute-duration MRL of 70 ppb, thus, it is unlikely that H_2S levels measured in the CCND neighborhoods would result in an increased risk of adverse acute health effects. Further, the maximum measured one-hour average H_2S value in the CCND neighborhoods was 76.2 ppb, more than six times lower than the one- hour USEPA AEGL-1 for H_2S of 510 ppb.

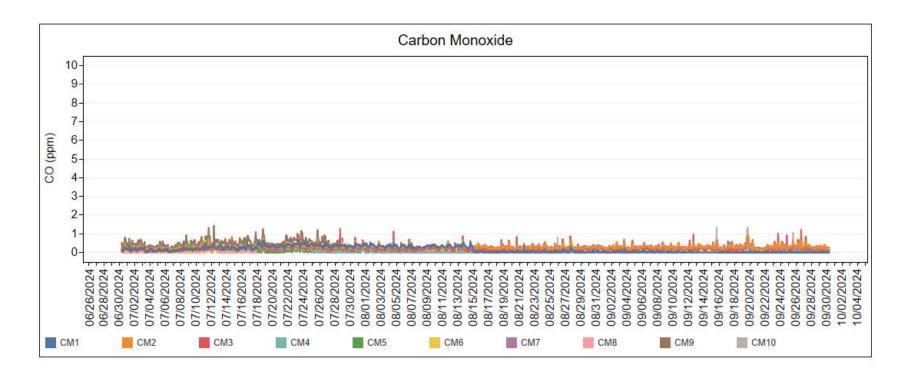
3.6 Particulate Matter (PM_{2.5})

Figures 1-6A and 1-6B show the one-hour and 24-hour block averages of PM $_{2.5}$, respectively, from July 1, 2024, through September 30, 2024. The USEPA NAAQS for PM $_{2.5}$ is 35 μ g/m 3 as 98th percentile of 24-hour daily (block) average concentrations, averaged over 3 years. The measured 24-hour averages (maximum 24-hour average: 14.5 μ g/m 3) were below the NAAQS concentration at all CCND sensor locations. There was no reference value to which to compare the one-hour block averages.

3.7 Total Volatile Organic Compounds (VOC)

Figure 1-7 shows the one-hour rolling averages of total VOCs from July 1, 2024, through September 30, 2024. The measured maximum one-hour average across this reporting period was 0.6 ppm. There are no NAAQS or health-based reference values for total VOCs because this measurement may be made of one to thousands of different chemical compounds having various thresholds of adverse health effects.

VOC sensor-triggered samples were collected automatically when instantaneous total VOCs were detected at an airborne concentration of 1 part per million (ppm) or higher for one minute or longer. During the third quarter of 2023, total VOC levels went above 1 ppm three times, which triggered the capture of three air samples. The two triggered air samples were analyzed by an accredited analytical testing laboratory. The third triggered air sample was lost during its shipping. The results of the sensor-triggered events and health risk evaluations are presented in separate reports found at ccnd-air.com/Documents.


4.0 CONCLUSIONS

Continuous air monitoring sensors were operating at ten locations across the CCND neighborhoods during the monitoring period. The air monitoring data from July-September 2024 was compared to air quality standards and health-based reference values to determine if the measured air quality may have the potential for adverse effects on community health.

The results of this assessment indicate the following:

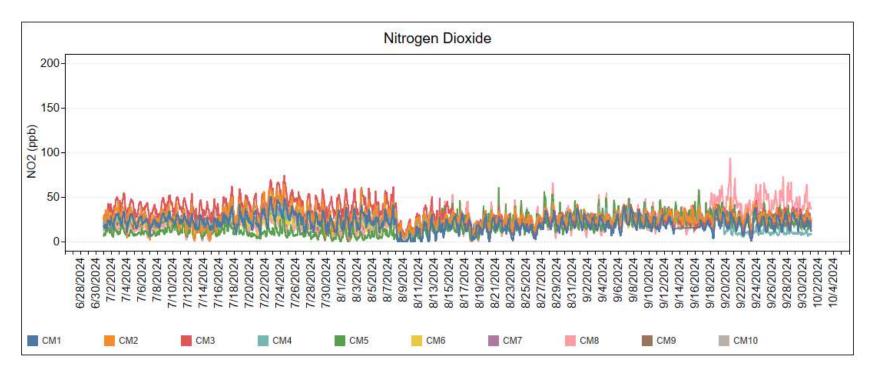

- The monitored analyte levels at all locations were below their respective acute healthbased reference levels, if available.
- It should be noted that the NAAQS comparisons are used in the CCND Air Monitoring program for reference use only and may not be used to determine air quality compliance. This is because NAAQS compliance must be determined through the use of regulatory certified instrumentation and required calculation methodology further discussed in section 2 of this report. However, data have been used for comparison purposes only.

FIGURE 1-2
CCND COMMUNITY MONITORING CARBON MONOXIDE (CO) DATA⁶
(ONE-HOUR ROLLING AVERAGES)

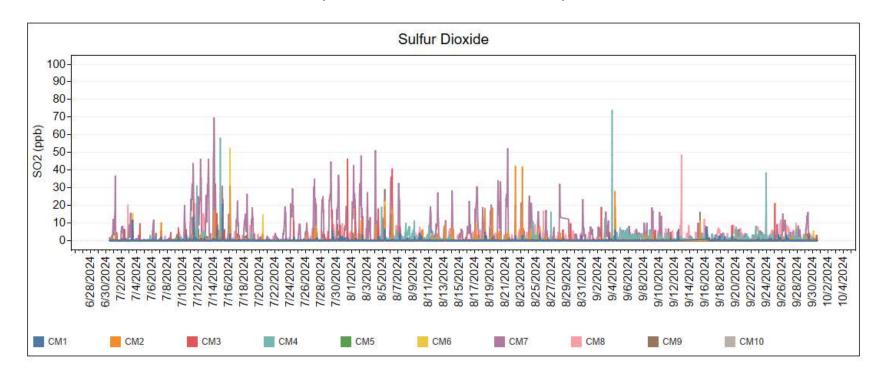

 $^{^{6}}$ The SensIT RAMP's detection limit for carbon monoxide is 0.05ppm.

FIGURE 1-3
CCND COMMUNITY MONITORING NITROGEN DIOXIDE (NO₂) DATA⁷
(ONE-HOUR ROLLING AVERAGES)

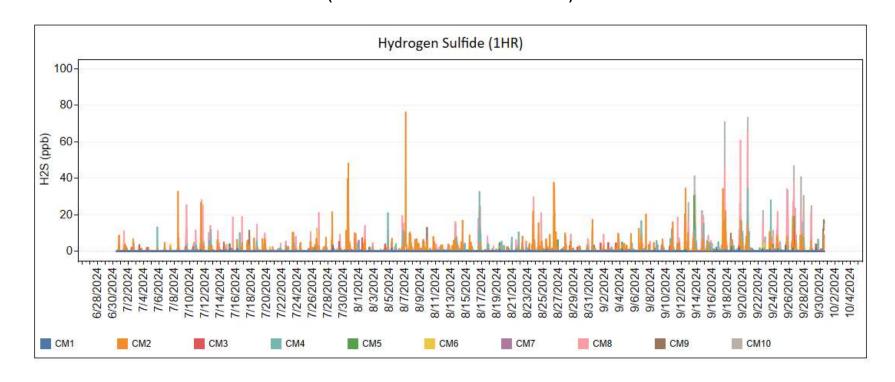
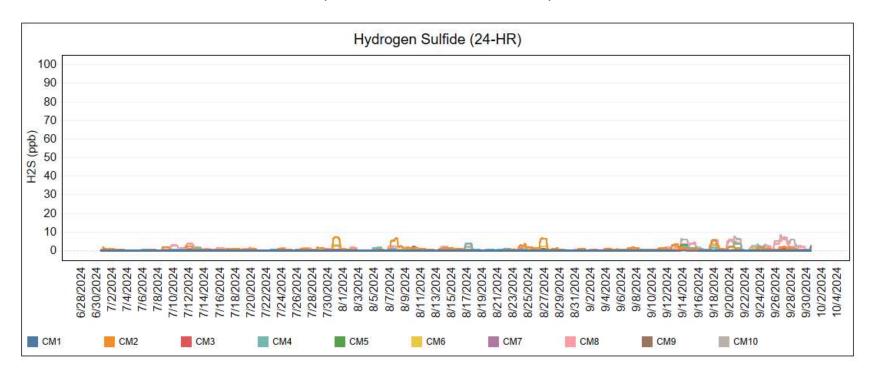

⁷ The SensIT RAMP's detection limit for nitrogen dioxide is 20 ppb.

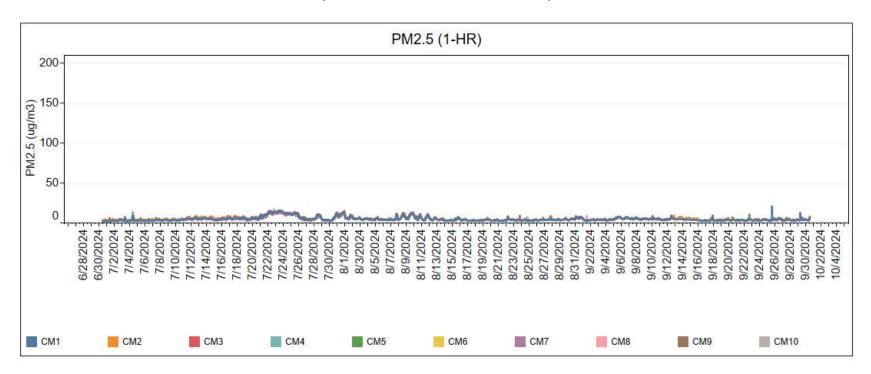
FIGURE 1-4
CCND COMMUNITY MONITORING SULFUR DIOXIDE (SO₂) DATA⁸
(ONE-HOUR ROLLING AVERAGES)

 $^{^{8}}$ The SensIT RAMP's detection limit for sulfur dioxide is 50 ppb.


FIGURE 1-5A
CCND COMMUNITY MONITORING HYDROGEN SULFIDE (H₂S) DATA⁹
(ONE-HOUR ROLLING AVERAGES)

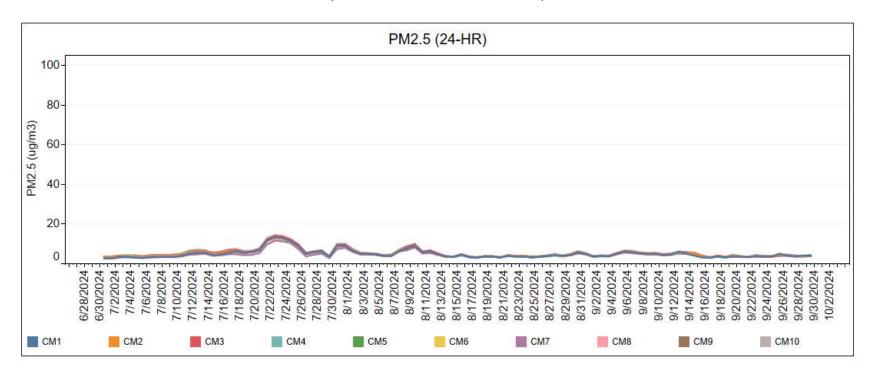
 $^{^{9}}$ The SensIT RAMP's detection limit for hydrogen sulfide is 10 ppb.

FIGURE 1-5B CCND COMMUNITY MONITORING HYDROGEN SULFIDE (H_2S) DATA¹⁰


(24-HOUR ROLLING AVERAGES)

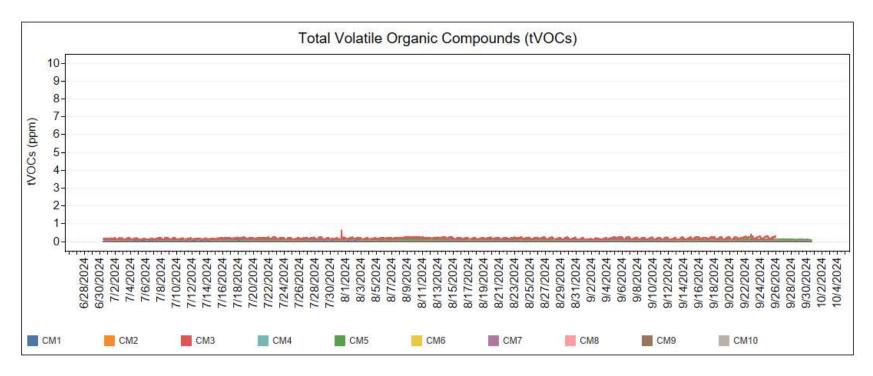
 $^{^{\}rm 10}$ The SensIT RAMP's detection limit for hydrogen sulfide is 10 ppb.

FIGURE 1-6A CCND COMMUNITY MONITORING PM_{2.5} DATA¹¹


(ONE-HOUR BLOCK AVERAGES)

¹¹ The SensIT RAMP's detection limit for $PM_{2.5}$ is 1 μ g/m³.

FIGURE 1-6B CCND COMMUNITY MONITORING PM_{2.5} DATA¹²


(24-HOUR BLOCK AVERAGES)

 $^{^{12}}$ The SensIT RAMP's detection limit for $PM_{2.5}$ is 1 $\mu g/m^3.$

FIGURE 1-7 CCND COMMUNITY MONITORING VOC DATA¹³

(ONE-HOUR ROLLING AVERAGES)

 $^{^{13}}$ The SensIT RAMP's detection limit for VOC is 0.01 ppm.

5.0 PROGRAM CHANGES

No program changes.

CCND Community Monitoring 2024 Q3

Prepared by:

Antonios Tasoglou, PhD, PMP Emerging Technology Manager Montrose Air Quality Services, LLC

Michael Lumpkin, PhD, DABT Senior Toxicologist CTEH®, LLC

Michael H. Lungshin

APPENDIX A CALIBRATION AND QA/QC DATA

Rose Hill

			Validation Results Table													
			CO Error			NO2 Error		SO2 Error				H2S Error		VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM1	7/18/2024	0%	29%	2%	2%	64%	47%	0%	113%	119%	0%	38%	37%	0%	9%	4%
CM1	8/13/2024	24%	11%	1%	3%	2%	0%	6%	21%	3%	24%	11%	0%	22%	13%	10%
CM1	9/16/2024	34%	3%	4%	15%	19%	0%	0%	21%	8%	2%	4%	1%	9%	3%	0%

RBC

			Validation Results Table													
			CO Error			NO2 Error		SO2 Error				H2S Error		VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM2	7/19/2024	7%	11%	1%	0%	12%	1%	0%	18%	5%	0%	14%	9%	2%	23%	22%
CM2	8/7/2024	10%	26%	3%	37%	31%	0%	14%	11%	4%	12%	2%	1%	16%	25%	2%
CM2	9/17/2024	3%	10%	1%	19%	16%	3%	20%	23%	1%	33%	40%	0%	17%	20%	2%

Adams High

			Validation Results Table													
			CO Error		NO2 Error			SO2 Error				H2S Error		VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM3	7/30/2024	2%	9%	4%	2%	5%	6%	0%	37%	1%	0%	21%	9%	7%	2%	5%
CM3	8/13/2024	27%	1%	1%	25%	46%	1%	23%	35%	0%	11%	10%	0%	1%	7%	0%
СМЗ	9/26/2024	5%	12%	2%	4%	4%	1%	37%	3%	0%	6%	8%	0%	5%	16%	19%

Adams Middle

Midule																
			Validation Results Table													
			CO Error			NO2 Error SO2 Error						H2S Error		VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM4	7/25/2024	2%	43%	20%	1%	7%	2%	2%	2%	14%	0%	29%	31%	0%	30%	16%
CM4	8/5/2024	7%	49%	4%	24%	22%	1%	21%	48%	0%	39%	31%	0%	8%	22%	0%
CM4	9/23/2024	5%	26%	0%	97%	84%	3%	8%	9%	4%	79%	82%	0%	22%	26%	0%

Central

			Validation Results Table													
			CO Error			NO2 Error		SO2 Error				H2S Error		VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM5	7/18/2024	4%	40%	19%	0%	30%	20%	0%	17%	4%	2%	8%	46%	6%	8%	11%
CM5	8/8/2024	98%	56%	5%	58%	54%	1%	12%	16%	0%	16%	103%	0%	13%	9%	6%
		Not availabl	Not availabl	Not availabl				_								
CM5	9/19/2024	е	е	е	110%	109%	1%	55%	10%	0%	52%	55%	0%	10%	10%	5%

Focus Point

Polit																
			Validation Results Table													
			CO Error		NO2 Error			SO2 Error			H2S Error			VOC Error		
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM6	7/29/2024	0%	23%	15%	0%	22%	28%	0%	5%	49%	0%	8%	9%	0%	17%	1%
CM6	8/14/2024	22%	36%	1%	15%	7%	3%	73%	25%	0%	0%	12%	0%	18%	24%	0%
CM6	9/18/2024	1%	4%	1%	0%	0%	0%	48%	76%	0%	19%	16%	0%	10%	19%	0%

Kearney

•			Validation Results Table													
		CO Error			NO2 Error			SO2 Error		H2S Error			VOC Error			
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM7	7/10/2024	2%	2%	17%	0%	12%	18%	2%	0%	6%	0%	8%	7%	0%	27%	21%
CM7	8/8/2024	16%	10%	1%	3%	16%	2%	11%	26%	8%	12%	3%	0%	23%	28%	0%
CM7	9/19/2024	22%	5%	3%	10%	8%	1%	19%	4%	0%	16%	20%	0%	13%	2%	0%

Monroe

			Validation Results Table													
		CO Error			NO2 Error			SO2 Error		H2S Error			VOC Error			
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM8	7/19/2024	0%	1%	7%	0%	20%	4%	9%	28%	8%	0%	12%	12%	1%	31%	31%
CM8	8/7/2024	13%	7%	0%	44%	28%	0%	21%	50%	0%	7%	11%	0%	6%	4%	1%
CM8	9/17/2024	1%	6%	0%	3%	13%	3%	100%	99%	0%	12%	12%	0%	1%	3%	2%

48th and Race

-our und nace																
			Validation Results Table													
		CO Error			NO2 Error		SO2 Error		H2S Error			VOC Error				
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
СМ9	7/29/2024	0%	12%	31%	3%	4%	5%	0%	46%	48%	0%	4%	1%	0%	36%	31%
CM9	8/14/2024	74%	110%	4%	10%	11%	2%	95%	108%	1%	12%	7%	0%	42%	43%	1%
СМ9	9/12/2024	35%	23%	2%	8%	5%	1%	41%	52%	2%	1%	8%	1%	33%	39%	0%

Alsup

, woah																
			Validation Results Table													
		CO Error			NO2 Error		SO2 Error		H2S Error			VOC Error				
Commun ity Monitor Location	Validation Date	Span (<30%)	Precisio n (<30%)	Zero (<10%)	Span (<30%)	Precisio n (<30%)	Zero (<10%)									
CM10	7/25/2024	7%	22%	42%	0%	23%	22%	8%	26%	30%	0%	58%	61%	7%	29%	31%
CM10	8/5/2024	27%	130%	7%	24%	28%	1%	34%	39%	1%	58%	59%	0%	22%	22%	6%
CM10	9/23/2024	145%	7%	0%	4%	21%	2%	16%	15%	0%	18%	24%	0%	25%	25%	5%

APPENDIX B FIELD DATA SHEETS

AQM Serial Number Community Monitor Location Date Operator	829 2 5/3/2024 DS	830 7 9/20/2024 DS	831 6 5/3/2024 DS
Monthly Checks			
SO2 bottle (psi)	✓	✓	✓
H2S bottle (psi)	✓	✓	✓
Gas Validation Checks (weekly, reviewed Monthly)	✓	✓	✓
Quarterly Checks			
Gas Inlet			
Flow Rate	✓	✓	✓
Filter Change	✓	✓	✓
Field Calibration	✓	✓	✓
Particulate Monitor			
Flow Rate	✓	✓	✓
Filter Change	✓	✓	✓
Check for Leaks	Failed	Failed	Failed
Check Zero (+/- 3.0 ug/m^-3)	✓	✓	✓
Check laser and detector (17.5 mA)	✓	✓	✓
Clean Cyclone	✓	✓	✓

Notes:

34

APPENDIX C CALIBRATION GAS CERTIFICATION SHEETS

CERTIFICATE OF ANALYSIS

Date: April 20, 2025 **Customer:** Cal Gas Direct Inc.

Order Number: 24102390

Lot Number: 304-403151303-1 **Use Before:** 09/20/2026

Component	Requested Concentration	Analytical Result (+/- 5%)
Sulfur Dioxide	20 PPM	18.5 PPM
Air	Balance	Balance

Cylinder Size: 2.0 Cu. Ft. **Valve:** 5/8" -18UNF **Contents:** 58 Liter **Pressure:** 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

CERTIFICATE OF ANALYSIS

Date: April 20, 2025 **Customer:** Cal Gas Direct Inc.

Order Number: 24102390 Lot Number: 304-403151307-1 Use Before: 09/20/2028

Component	Requested Concentration	Analytical Result (+/- 2%)
Isobutylene	200 PPM	206.4 PPM
Air	Balance	Balance

Cylinder Size: 2.0 Cu. Ft. **Valve:** 5/8" -18UNF **Contents:** 58 Liter **Pressure:** 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

CERTIFICATE OF ANALYSIS

Date: April 20, 2025 **Customer:** Cal Gas Direct Inc.

Component	Requested Concentration	Analytical Result (+/- 5%)
Hydrogen Sulfide	20 PPM	21 PPM
Air	Balance	Balance

Cylinder Size: 2.0 Cu. Ft. **Valve:** 5/8" -18UNF **Contents:** 58 Liter **Pressure:** 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

CERTIFICATE OF ANALYSIS

Date: April 20, 2025 **Customer:** Cal Gas Direct Inc.

Order Number: 24102390
Lot Number: 304-403151306-1
Use Before: 09/20/2028

ComponentRequested ConcentrationAnalytical Result (+/- 2%)Carbon Monoxide500 PPM521 PPMNitrogenBalanceBalance

Cylinder Size: 2.0 Cu. Ft. **Valve:** 5/8" -18UNF **Contents:** 58 Liter **Pressure:** 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

THIS IS THE LAST PAGE OF THIS DOCUMENT